Skip to content

Installation & Setup

🎯 Prerequisites

ResourceMinimum
CPU2 cores
RAM6 GiB
Architecturex86_64 / ARM64
SoftwareDocker & Docker Compose installed

🚀 Quick Start

1. Download and Setup

bash
git clone https://github.com/ModelEngine-Group/nexent.git
cd nexent/docker
cp .env.example .env # Configure environment variables

2. Deployment Options

The deployment script offers multiple modes:

bash
bash deploy.sh

Available deployment modes:

  • Development mode (default): Exposes all service ports for debugging
  • Infrastructure mode: Only starts infrastructure services
  • Production mode: Only exposes port 3000 for security
  • Beta mode: Uses development branch images

Optional components:

  • Terminal Tool: Enables openssh-server for AI agent shell command execution
  • Regional optimization: Mainland China users can use optimized image sources

3. Access Your Installation

When deployment completes successfully:

  1. Open http://localhost:3000 in your browser
  2. Follow the setup wizard for initial configuration
  3. Configure your model providers (see Model Providers Guide)

🤖 Model Configuration

Nexent supports all OpenAI-compatible models, including:

  • Large Language Models (LLM): Any OpenAI-compatible API provider
  • Multimodal Vision Models: Text + image processing capabilities
  • Embedding Models: All OpenAI-compatible embedding services
  • Text-to-Speech & Speech-to-Text: Multiple provider support
  • Search Integration: Web search and semantic retrieval

Quick Provider Setup

For detailed setup instructions and API key acquisition, see our Model Providers Guide.

Recommended for Quick Start:

  • LLM: Silicon Flow (Free tier available)
  • Embedding: Jina AI (Free tier available)
  • Search: EXA (Free tier available)

Configuration Methods

Method 1: Web Interface

  1. Access model configuration at http://localhost:3000
  2. Add provider details: Base URL, API Key, Model Name

Method 2: Environment Variables Add to your .env file:

bash
LLM_BASE_URL=https://api.siliconflow.cn/v1
LLM_API_KEY=your_api_key
EMBEDDING_API_KEY=your_jina_key
EXA_API_KEY=your_exa_key

🏗️ Service Architecture

The deployment includes the following components:

Core Services:

  • nexent: Backend service (port 5010)
  • nexent-web: Frontend interface (port 3000)
  • nexent-data-process: Data processing service (port 5012)

Infrastructure Services:

  • nexent-postgresql: Database (port 5434)
  • nexent-elasticsearch: Search engine (port 9210)
  • nexent-minio: Object storage (port 9010, console 9011)
  • redis: Cache service (port 6379)

Optional Services:

  • nexent-openssh-server: SSH server for Terminal tool (port 2222)

🔌 Port Mapping

ServiceInternal PortExternal PortDescription
Web Interface30003000Main application access
Backend API50105010Backend service
Data Processing50125012Data processing API
PostgreSQL54325434Database connection
Elasticsearch92009210Search engine API
MinIO API90009010Object storage API
MinIO Console90019011Storage management UI
Redis63796379Cache service
SSH Server22222222Terminal tool access

For complete port mapping details, see our Dev Container Guide.

💡 Need Help

🔧 Build from Source

Want to build from source or add new features? Check the Docker Build Guide for step-by-step instructions.

For detailed setup instructions and customization options, see our Development Guide.