Vector Database
This document describes the vector database functionality in the Nexent SDK.
Overview
The vector database module provides efficient storage and retrieval of high-dimensional vector embeddings with support for:
- Vector similarity search
- Metadata filtering
- Batch operations
- Multiple backend support
Supported Backends
Elasticsearch
High-performance distributed search and analytics engine.
Qdrant
Vector similarity search engine optimized for performance.
FAISS
Library for efficient similarity search and clustering of dense vectors.
Usage
python
from nexent.vector_database import VectorDB
# Initialize vector database
vector_db = VectorDB(
backend="elasticsearch",
host="localhost",
port=9200
)
# Insert vectors
vector_db.insert(
vectors=embeddings,
metadata={"source": "document.pdf"}
)
# Search similar vectors
results = vector_db.search(
query_vector=query_embedding,
top_k=10
)
Configuration
The vector database can be configured through:
- Connection parameters
- Index settings
- Search parameters
For detailed configuration options, see the SDK documentation.